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1. Introduction

Topological Field Theory (TFT) is a powerful tool for studying the RG-invariant proper-

ties of non-trivial quantum field theories. A particularly important class of examples is

provided by the A and B twists of an N = (2, 2) SUSY Non-Linear Sigma Model (NLSM)

defined on a Riemann surface Σ [1, 2]. These TFTs provide rich examples of solvable

quantum field theories, and they have important applications to compactification in string

theory. In addition, these TFTs can be used to study enumerative geometry and refined
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topological invariants, such as the Gromov-Witten invariants, of many manifolds. Finally,

these theories provide a natural setting for the study of mirror symmetry of Calabi-Yau

manifolds [2]. Although the TFT perspective on the NLSM is immediately conceptually

useful, aside from particularly tractable examples such as the classic work of Candelas et

al [3] and its various generalizations [4 – 7], direct study of these models is difficult.

Remarkably, a large class of NLSMs, including those corresponding to Calabi-Yau

manifolds constructed as hypersurfaces or complete intersections in Fano toric varieties,

may be constructed as IR limits of certain N = (2, 2) SUSY abelian gauge theories termed

Gauged Linear Sigma Models (GLSMs) [8]. The RG-invariant observables of the A and

B models may be computed in the massive theory. The A-model in particular has been

studied extensively in [8, 9]. It was found that many properties of the GLSM, including

the correlators in the topologically twisted models, are constrained by toric geometry. For

example, toric methods allow an explicit and general formulation of the instanton sum

for the “toric” subset of A-model correlators [9]. The study of these instanton sums is

enlightening: it allows for a careful definition of the monomial-divisor mirror map, and it

reduces mirror symmetry to the mirror map, a non-trivial renormalization of the GLSM

versus NLSM parameters. Furthermore, for a genus zero Riemann surface, the quantum re-

striction formula of [9] reduces the computation of topological correlators for a Calabi-Yau

hypersurface to the computation of correlators on the ambient Fano toric variety. Where

the mirror map is known, this allows for an explicit verification of mirror symmetry at the

level of TFT. These are powerful results. Still, the instanton sums are unwieldy. In general

they may be quite intricate, and simple but important properties of the correlators, like

the quantum cohomology relations, seem to follow from obscure relations between inter-

section numbers on various toric varieties [9, 10]. Finally, the toric methods for performing

the gauge instanton sums have only been developed for genus zero correlators, and their

extension to g > 0 correlators is non-trivial.

In this work we reduce the computation of A-model correlators in a wide class of

GLSMs to a well-studied algebraic problem. Our result is simple to state. Consider a

GLSM with a set of chiral matter N = (2, 2) multiplets Φi, i = 1, . . . , n, charged under a

gauge group [U(1)]r with charges Qa
i , a = 1, . . . , r, and zero superpotential for the matter

fields. Such models will be referred to as toric GLSMs. Upon twisting, the local A-model

observables are found to be functions of the σa, the bosonic super-partners of the gauge

fields. The most general A-model correlator on Σg, a Riemann surface of genus g, may

be obtained from linear combinations of 〈σa1
(z1) · · · σas(zs)〉g and derivatives of these with

respect to the GLSM parameters. Since this is a TFT computation, the correlator is

independent of the generic points z1, . . . , zs on Σg. Following a standard notation, we will

denote these correlators by 〈F (σ)〉g , where F (σ) is to be understood as a power series in

σak
(zk) with a generic choice of the zk. In a sense made more precise below, “most” toric

GLSMs possess a region of parameter space where the theory has a number of discrete

Coulomb vacua determined as solutions to the equations of motion for a certain effective

twisted superpotential W̃eff(σ). This class includes all GLSMs corresponding to compact

toric varieties. For these compact, toric GLSMs there is an additional simplification: there

exists a region of the parameter space where these discrete Coulomb vacua are the only
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vacua. In this case, the A-model correlators at genus g are given by

〈F (σ)〉g =
∑

σ̂|dfWeff(σ̂)=0

H̃(σ̂)g−1F (σ̂), (1.1)

where H̃(σ) = H
∏n

i=1 ξi, H is the Hessian of W̃eff , and ξi =
∑

a Qa
i σa. The equations of

motion that follow from dW̃eff = 0 are polynomial in the σa, so the computation of A-model

correlators is now reduced to an algebraic problem.

This form is convenient for obtaining explicit correlators in many toric examples. Fur-

thermore, by the use of the quantum restriction formula of [9], it becomes a useful tool to

compute genus zero A-model correlators on GLSMs corresponding to Calabi-Yau hypersur-

faces in toric varieties. In addition, eqn. (1.1) manifestly satisfies the quantum cohomology

relations, and, as we will see in more detail below, it is a useful probe for the physics of

the Coulomb branch of the GLSM.

Since we have not coupled the TFT to topological gravity, our result is of limited use

for the computation of general Gromov-Witten invariants — factorization of the correlators

implies that our higher genus results do not generate “new” invariants for g > 0. However,

we believe that for the purposes of enumerative geometry, eqn. (1.1) is a neat packaging of

the requisite combinatorics. Essentially, while it is true that the g > 0 correlators may be

obtained by factorization from the g = 0 correlators, if one interested in explicit numbers,

eqn. (1.1) may eliminate much algebraic suffering.

It is no accident that the form we find is reminiscent of the correlators in topological

Landau-Ginzburg models studied by Vafa [11]. In fact, our analysis is a simple extension

of those techniques to include the zero modes of the matter fields. These additional zero

modes are the source of the factor of
∏

i ξi in our expression. We will discuss this further

below.

While eqn. (1.1) computes the correlators in compact toric GLSMs, in non-compact

toric GLSMs the above expression is only a part of the story. In general, only a subset

of the solutions to dW̃eff = 0 correspond to Coulomb vacua, and eqn. (1.1) provides the

correct measure for the contributions to the correlators due to these vacua. In addition,

other, non-Coulomb vacua may also contribute, and these contributions may invalidate the

quantum cohomology relations.

The rest of this note is organized as follows. In section 2 we briefly review the toric

GLSM and the corresponding A-model, and we take care to distinguish the GLSM phases

according to the properties of the Coulomb vacua. In section 3 we prove eqn. (1.1) by

studying the A-model localization onto the Coulomb vacua. We provide some applications

of the result to compact toric GLSMs in section 4. In section 5 we turn to a study of a

non-compact example, and we conclude with a discussion in section 6.

2. A GLSM overview

2.1 Some superspace details

The GLSM is a d = 2 abelian gauge theory with N = (2, 2) supersymmetry. The field

content is neatly summarized in terms of N = (2, 2) multiplets. The matter fields belong

– 3 –



J
H
E
P
0
2
(
2
0
0
6
)
0
4
4

to chiral multiplets Φi = (φi, ψi
±, ψ

i
±, F i), with φi a complex scalar, ψi

± left/right-moving

Weyl fermions, F i a complex auxiliary field, and i = 1, . . . , n. These fields are charged

under the gauge group G = [U(1)]r with integral charges Qa
i , a = 1, . . . , r. The gauge fields

reside in real vector supermultiplets Va, and the gauge-invariant field-strengths are to be

found in twisted chiral multiplets Σa = (σa, λ±,a, λ±,a,Da − if01,a), where σa is a complex

scalar, λ±,a are left/right-moving Weyl fermions, Da is a real auxiliary field, and f01,a is

the abelian gauge field-strength.

We define the GLSM at a scale µ by a Lagrange density Lµ given by a sum of two

terms, the Kähler term Lµ
K and the twisted superpotential term Lµ

fW
. We take the Kähler

term to be

Lµ
K =

∫
d4θ

(
−1

4

n∑

i=1

Φ
i
exp

(
2

r∑

a=1

Qa
i Va

)
Φi +

1

4µ2g(µ)2

r∑

a=1

ΣaΣa

)
, (2.1)

where g(µ) is the dimensionless coupling of the gauge theory. The tree-level twisted super-

potential is given by

Lµ
fW

=

[
− i

2
√

2

∫
dθ+dθ

−
r∑

a=1

Σaτ
a(µ)

]
+ c.c.. (2.2)

The τa(µ) = ira(µ) + θa

2π are the parameters of the model. Each τa is a combination

of a Fayet-Iliopoulos (F-I) term ra and a θ-angle θa. It is useful to define single-valued

parameters qa = e2πiτa

. For generic values of these parameters the moduli space of classical

vacua of the GLSM so defined is a toric variety. The GLSM may be generalized by including

a superpotential W (Φ) which serves to restrict the moduli space to a hypersurface or

a complete intersection in the ambient toric variety. We will restrict attention to toric

GLSMs, those with W (Φ) = 0.

2.2 Basic GLSM properties

Let us begin with a brief review of the Higgs vacua of the GLSM.1 This material is well

known, and we refer the reader to [8, 9] for further details. The classical moduli space of

a toric GLSM is obtained by solving the D-terms modulo the gauge group as functions

of the F-I parameters ra. One finds that there exists a cone Kc ⊆ R
r where the space of

solutions to the D-terms is non-empty.2 For generic values of the ra ∈ Kc, the gauge group

is completely broken, the σa are massive, and the moduli space is a toric variety of complex

dimension d = n− r. The geometric properties of this toric variety vary smoothly with the

ra away from co-dimension one sub-cones of Kc, where the gauge group is un-Higgsed and

some or all of the σa become massless. These boundaries subdivide Kc into a set of cones

KV , indexed by a set of birationally equivalent toric varieties. There is a natural association

1There are no photons and no Higgs mechanism in two dimensions, and a description based on Higgs

vacua is only valid at weak coupling. Fortunately, this is just where we will use it, and so we will ignore

this subtlety in what follows.
2The D-term equations are Da =

P

i
Qa

i |φ
i|2 − ra, whence it follows that Kc is indeed a cone, the space

positively generated by the n vectors Qi ∈ R
r.
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between the varieties and the cones: for ra ∈ KV the moduli space of the GLSM’s classical

vacua is the variety V . The cones KV are termed phases of the GLSM. By choosing the

F-I parameters deep in the interior of any such phase, we obtain a weakly coupled theory

whose low energy theory is that of a NLSM with target-space V . For reasons that will

become clear below, we will also refer to the complement of Kc as a phase.

As the F-I terms are tuned to approach a lower dimensional face of KV , the low energy

description seems to break down as V becomes singular, or equivalently, there appear new

massless degrees of freedom corresponding to an un-Higgsed subgroup of the gauge group.

Quantum effects lift the corresponding singularities when the un-Higgsed gauge group

satisfies
∑

i Qi 6= 0, and even for gauge groups with
∑

i Qi = 0, the singularities are lifted

for generic values of the corresponding θ angle. Thus, all phases are smoothly connected,

and the low-energy NLSM description is smooth away from a complex co-dimension one

subvariety in the space of the qa—the singular locus. Of course, from the point of view

of the GLSM there is no real singularity on the singular locus. However, we do expect

that the theory is strongly coupled on the singular locus, and strong coupling effects may

invalidate results based on the weakly coupled description.

In addition to the Higgs vacua, the GLSM possesses Coulomb vacua. These are ob-

tained when some of the σa acquire non-zero expectation values and give masses to some

or all of the matter fields. Integrating out these massive Φi multiplets leads to an effective

interaction for the Σa fields, which can be expressed in terms of an effective twisted super-

potential W̃eff(Σ) [8, 9]. The solutions to dW̃eff(σ) = 0 are continuous if
∑

i Qa
i = 0 for all

σa with non-zero expectation values, and they are discrete otherwise. The former exist only

on the singular locus of the model, while the latter vary smoothly with the parameters.

When all of the matter fields are massive, W̃eff(Σ) is given by3

W̃eff =

r∑

a=1

Σa log




n∏

i=1

(
1

exp(1)µ

r∑

b=1

Qb
iΣb

)Qa
i

/qa


 . (2.3)

The vacua corresponding to dW̃eff = 0 will occupy us for most of this note. For future

reference, we give the equations of motion which follow from dW̃eff = 0:

∏

i|Qa
i >0

(
ξi

µ

)Qa
i

= qa

∏

i|Qa
i <0

(
ξi

µ

)−Qa
i

, a = 1, . . . , r, (2.4)

where ξi =
∑

a Qa
i σa. We will also have use for

Hab :=
∂∈W̃eff

∂σa∂σb
=

∑

〉

Qa
〉Q

b
〉

ξ〉
. (2.5)

Of course, the Hessian of W̃eff is given by H = detH.

3We have left off a conventional over-all factor of − 1

4π
√

2
. As far as our results are concerned, this factor

can be absorbed in the definition of the string coupling.
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The Coulomb vacua are derived by integrating out massive matter fields, and thus are

only reliable in the regions of the parameter space where these fields are indeed massive.

In principle, this may depend on the renormalization of the Kähler terms, but at least in

the weak coupling regimes (i.e deep in the interior of some KV ) one may discern which

Coulomb vacua are reliable. At weak coupling, the φ mass term has the contribution

2
∑

i,a,b |φi|2Qa
i Q

b
iσaσb, so that a critical point of W̃eff is not reliable if all the σa are small.

When do these discrete Coulomb vacua arise? By examining the equations of motion

in eqn. (2.4) it is clear that these are homogeneous in the σa whenever
∑

i Q
a
i = 0 for all

a, leading to a continuous set of solutions for the σa. We have not shown it, but it seems

likely that if rank(Q) = r then this homogeneity is the only way to obtain a continuum of

solutions. So, we expect that W̃eff describes discrete Coulomb vacua whenever
∑

i Qa
i 6= 0

for some a. It is always possible to choose a basis for the action of the gauge group so

that Qa
i satisfy

∑
i Q

a
i = 0 for a > 1. We will work in this basis, taking ∆ =

∑
i Q1

i . The

condition for W̃eff to describe discrete Coulomb vacua is then just ∆ 6= 0. When ∆ = 0,

the continuous solutions to dW̃eff = 0 emerge on the principal component of the singular

locus [9].

The W̃eff above describes the vacua where all of the Φi are massive. Of course, there

may also be Coulomb-Higgs vacua, where the gauge group is partially Higgsed. Just as the

Coulomb vacua described by W̃eff , these may be labelled according to the space of σ vevs as

either continuous or discrete. The former are found on various non-principal components

of the singular locus of the model [9], while the latter, like their discrete Coulomb cousins,

may be found in various phases. We will not study the discrete Coulomb-Higgs vacua in

this note. However, when analyzing a particular phase one should be careful to check that

the results are not invalidated by the presence of these vacua.

We will find it useful to characterize the phases of the GLSM by the types of vacua

found at weak coupling. Whenever a phase does not have any discrete Coulomb-Higgs

vacua, we will refer to it as:

- a Geometric Phase if its weak coupling limit has no reliable Coulomb vacua, and the

vacua are purely Higgs;

- a Non-Geometric Phase if the situation is reversed and there are no Higgs vacua;

- a Mixed Phase if both Coulomb and Higgs vacua are present at weak coupling.

These distinctions are important. For example, in a model with a Non-Geometric Phase,

eqn. (1.1) yields the correlators at any genus, while in a model with a Geometric Phase,

we may be able to compute the genus zero correlators by gauge instanton sums. As we will

see below, in a Mixed Phase the correlators may be obtained by simply adding the Higgs

and Coulomb contributions. Note that a Non-Geometric Phase may only exist outside of

Kc, so it is only if Kc 6' R
r, that our strongest results hold. Happily, this holds for compact

toric GLSMs.
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3. A-model localization on the discrete Coulomb branch

3.1 Twisting and localization: generalities

The topological twisting of an N = (2, 2) theory may be accomplished by shifting the spin

connection on the world-sheet by the (ultraviolet) R-symmetry of the model. In effect,

this produces a new theory by modifying the spins of the fields. Let us now point out

some basic consequences of this twisting in the context of the GLSM. The twisted theory

possesses a world-sheet anti-commuting scalar operator Q which can be used to project

the theory onto the Q-cohomology. In the GLSM, this leads to topological observables

parametrized by powers of the σa. Another consequence of the twisting is that the path

integral localizes onto the Q-invariant configurations—the SUSY vacua of the untwisted

theory. This property of localization [1, 2, 12 – 14] plays a crucial role in the study of

TFT. Roughly, this is the statement that the path integral will localize onto the vacua of

the theory, and, under certain conditions, the contribution of a particular vacuum may be

computed semi-classically. This still leaves a difficult problem, especially when quantum

vacua are involved. Of course, this is the case when we wish to study the correlators

in a Mixed or Non-Geometric Phases of the GLSM. Fortunately, in that case the vacua

are controlled by W̃eff(Σ), a quantity determined by holomorphy and ’t Hooft anomaly

matching.

A further simplification makes the TFT computations tractable: since the singular lo-

cus is a complex co-dimension one variety in the space of the qa, we expect that we should

be able to compute correlators at weak coupling in any phase, and then unambiguously

obtain the result for generic qa by analytic continuation. Indeed, this has been demon-

strated for the Geometric Phases in [9]. As we will see below, the result also holds in more

general situations involving the Coulomb vacua.

3.2 A-twist details

On a Euclidean signature world-sheet Σg the spin connection may be thought of as a

U(1) connection, and twisting amounts to shifting the Lorentz U(1) charges of the fields

by a combination of the R-charges. In the toric GLSM the classical U(1)+ × U(1)− R-

symmetry group leaves the superfields Φi, Va invariant while acting on the θ± with charges

Q±(θ±) = +1, Q∓(θ±) = 0. All other charges are determined by this choice, and, in

particular, Q±(σa) = ±1. When ∆ 6= 0, this classical R-symmetry suffers from an anomaly

in the presence of gauge instantons. That means that only the vector combination may

be used to obtain a consistent twisted theory. This is the A-model, obtained by twisting

with QV = 1
2(Q+ + Q−). If we designate the Lorentz charges of the fields by QL, the new

Lorentz charges are Q′
L = QL − QV . Applying this to the fields of the GLSM we find

that the φi, σa remain world-sheet scalars, but the spins of the fermions are shifted. The

ψ+, ψ−, λ−, λ+ become world-sheet one-forms, while ψ−, ψ+, λ+, λ− become world-sheet

– 7 –
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scalars [2]:

ψ+ → ψz λ+ → η

ψ− → χ λ− → ρz

ψ+ → χ λ+ → ρz

ψ− → ψz λ− → η.

(3.1)

3.3 Localization

We are interested in computing expectation values of the form 〈F (σ)〉g in the twisted theory.

As described above, to perform these computations we deform the model to weak coupling,

where we have a reasonable handle on the vacua of the theory. Since the TFT path integral

localizes onto the vacua, we may compute the correlators by summing contributions from

the vacua. Let us suppose we are working in a phase of the GLSM without discrete

Coulomb-Higgs vacua. At weak coupling, the path integral then receives contributions

from the Higgs vacua—the gauge instantons, and the discrete Coulomb vacua:

Z = ZHiggs + ZCoulomb. (3.2)

At g = 0, the contribution from the gauge instantons may be determined by the methods

of Morrison and Plesser [9], and we will now show how to compute ZCoulomb at any genus.

Since we wish to compute 〈F (σ)〉g , we may first perform the integration over the Φi

multiplets. As we have argued above, in the untwisted theory this leads to a factor of

exp
(
−

∫
d2zLfWeff

)
in the path integral over the Σa multiplets. When we perform this

integration in the twisted theory, we find a similar result, but we must be careful of one

subtlety: the zero modes of the Φi multiplets. In the untwisted theory the ψ±, ψ± had

no zero modes, and, aside from the factor of exp
(
−

∫
d2zLfWeff

)
and a deformation of the

(irrelevant) Kähler term of the Σa, the one-loop fermion determinants cancelled the bosonic

ones as a consequence of the N = (2, 2) SUSY. In the twisted theory, while the non-zero

modes of the Φi multiplets continue to be paired up just as in the untwisted theory, the

zero modes of the fermions no longer pair up with the φi zero modes. To deal with this

subtlety, we will separate out the integral over the Φi zero modes. Of course, integrating

out the non-zero modes will still lead to the factor of exp
(
−

∫
d2zLfWeff

)
.

We are now in a position to apply the standard localization arguments to the Coulomb

vacua. The corresponding Q-invariant configurations are a subset of the field configurations

φi = 0, fa = 0, ∂zσa = ∂zσa = 0, dW̃eff = 0. (3.3)

A solution to dW̃eff(σ) = 0 does not necessarily correspond to a Coulomb vacuum, and at

generic qa it is difficult to determine which of the solutions to dW̃eff(σ) = 0 are reliable.

However, at weak coupling, i.e. deep in the interior of a phase, we may answer this

question unambiguously: a σ vacuum is trustworthy only if in the weak coupling limit the

corresponding |σa| grow in such a way that all of the Φi multiplets may be consistently

integrated out. We will label these reliable vacua by σ̂. The contribution to the path

integral is then

ZCoulomb =
∑

σ̂

Z(σ̂), (3.4)

– 8 –



J
H
E
P
0
2
(
2
0
0
6
)
0
4
4

and we can compute Z(σ̂) at weak coupling by expanding in fluctuations about the σ̂

vacuum. Integration over the massive modes of the Σ multiplets leads to determinants

that exactly cancel between the bosons and fermions (this familiar fact may be traced back

to the primordial N = (2, 2) SUSY), and we are left with an integral over the zero-modes,

which factorizes into an integral over the Φ fluctuations and an integral over Σ fluctuations:

Z(σ̂) =

∫
[DΦ]

∫
[DΣ] exp(−SΦ − SΣ) =

∫
[DΦ] exp(−SΦ)

∫
[DΣ] exp(−SΣ)

= ZΦ(σ̂)ZΣ(σ̂). (3.5)

The terms in the action are given by

−SΦ =
∑

i

{
VΣ

[
−2|ξi|2|φi|2 +

√
2χiξiχ

i
]

+
√

2

∫

Σg

ψi
zξi ∧ ψ

i
z

}
,

−SΣ =
∑

a,b

{
VΣ

[
−4µ2σa

(
H†H

)ab
σb + ηa2H

ab
ηb

]
+

∫

Σg

ρz,a2Hab ∧ ρ‡,b

}
, (3.6)

where VΣ is the volume of Σg, and ξi and Hab—the latter defined in eqn. (2.5) — are to

be evaluated at σ = σ̂. We can now evaluate the Gaussian integrals. For ZΦ we find

ZΦ = ZφZχZψ, (3.7)

Z−1
φ = V n

Σ

∏

i

|ξi|2 , Zχ = V n
Σ

∏

i

ξi, Zψ =
∏

i

ξg
i . (3.8)

We have counted the 1 zero mode of χ (there is just one constant function on a compact

Σg) and the g zero modes of the ψi
z (there are g holomorphic one-forms on Σg). Similarly,

ZΣ = ZσZηZρ, (3.9)

with

Z−1
σ = V r

Σ |H|2 , Zη = V r
ΣH, Zρ = Hg, (3.10)

where H = detH. Putting it all together, we find the measure in eqn. (1.1).

The careful reader will note that we have ignored any subtleties associated to gauge

invariance. This simplification follows because the computations are performed on the

Coulomb branch, where the condition fa = 0 and the Riemann-Roch theorem ensure that

our computation of ZΦ is correct. We have also neglected various constants which may

be absorbed into an overall normalization of the correlators or a re-definition of the string

coupling constant. Furthermore, the sign of the fermion integration measure has been

chosen to match results from the Higgs Phase computations at genus zero.

In what follows, we will work in units of the scale µ. This scale plays an important

role in the untwisted theory, but upon twisting it becomes superfluous, essentially because

the TFT is a theory at zero energy. The scale can be important if one wants to make

connections with the untwisted theory, in which case it is easy to restore in our formulas.
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4. A few applications to compact toric GLSMs

As discussed above, we expect that whenever Kc 6' R
r, eqn. (1.1) directly gives the cor-

relators at arbitrary genus. This makes it useful for elucidating various properties of the

compact toric GLSM A-model correlators, as well as actual computations. We illustrate

this in this section.

4.1 Some properties of the correlators

We can easily demonstrate some important properties of these GLSM A-model correlators

from the explicit form. Perhaps the simplest observation is that the result presents the

correlators as a sum over all the solutions to a system of polynomial equations with finitely

many common zeroes. This finite sum has a natural expansion in terms of symmetric

functions, and, thus, it is clear that the correlators are meromorphic functions of the qa.

This is not obvious from the form of the instanton sum in a Geometric Phase. Another

equally simple but important observation is that the quantum cohomology relations, which

are just the equations of motion in eqn. (2.4) considered as operator relations, obviously

hold. This should also be compared with the Geometric phase computation, where this is a

non-trivial combinatorics result [9, 10]. Below, we give a few more technical observations.

4.1.1 TFT factorization

The A-twist reduces the Hilbert space of the GLSM to a vector space of dimension Nv,

where Nv is the number of discrete Coulomb vacua. The operators σa are now simply

Nv × Nv matrices, and correlators are obtained by taking a matrix trace:

〈F (σ)〉g = Tr

[
F (σ)

(
H̃(σ)

)g−1
]

. (4.1)

These correlators are easily shown to satisfy the factorization axioms of topological field

theory. These axioms state that if we choose a complete basis of states |i〉, and the corre-

sponding operators φi have the metric ηij = 〈φiφj〉0, with inverse ηij , then

1. if F (σ) = f1(σ)f2(σ), then

〈F (σ)〉g =
∑

ij

〈f1(σ)φi〉g′ηij〈φjf2(σ)〉g−g′ , (4.2)

and

2. for any F (σ)

〈F (σ)〉g =
∑

ij

ηij〈φiφjF (σ)〉g−1. (4.3)

These properties are apparent in a basis of states corresponding to the Nv σ-vacua. The

state operator correspondence is |i〉 ↔ φi = δσ,σi
, where σi is the value of σ in the i-th

vacuum. In this basis the operator σ is diagonal, and ηij = H̃(σi)δ
ij . Factorization follows

immediately. Thus, as expected, any genus correlator may be obtained from the g = 0

results.
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4.1.2 The ghost number selection rule

These A-model correlators obey a simple selection rule. Working in the basis where

∑

i

Q1
i = ∆ and

∑

i

Qa
i = 0 for a > 1, (4.4)

we may write the σ equations of motion in the form σa = ωaσ1 for a > 2, where ωa are now

determined by solving r − 1 polynomial equations, and σ1 satisfies σ∆
1 = q1s(ω) for some

s(ω). Thus, the sum over the vacua includes a sum over the ∆-th roots of unity. Since H̃

has degree d = n−r, if F (σ) has degree s, then 〈F (σ)〉g is non-zero only if s+d(g−1) = m∆

for some integer m, in which case 〈F (σ)〉g ∼ qm
1 . This selection rule is just the ghost number

selection rule familiar from TFTs in general and GLSMs in particular.

4.1.3 The all genus correlation function

Although factorization makes this exercise purely one of convenience, we can easily sum

over the genera to obtain

〈F (σ)〉 =
∑

g≥0

λ2g−2〈F (σ)〉g = Tr

[
F (σ)

λ2H̃

1

1 − λ2H̃

]
. (4.5)

From the selection rule above it follows that if F (σ) has degree s then

〈F (σ)〉 = q
s/∆
1 f

((
qd
1λ2∆

)1/gcd(d,∆)
)

. (4.6)

4.1.4 The quantum restriction formula

Given a Calabi-Yau hypersurface in a toric variety V , there exists a simple method for

obtaining the “toric” subset [15] of the g = 0 A-model correlators for the Calabi-Yau

model. These correlators can be computed by the quantum restriction formula of [9],

which expresses a hypersurface toric A-model correlator, denoted by 〈〈F (σ)〉〉, to a sum

over the A-model correlators for V :

〈〈F (σ)〉〉g=0 = 〈F (σ)
−K

1 − K
〉g=0, (4.7)

where −K is the operator corresponding to the anti-canonical divisor on V , given by

−K =
∑

i ξi. Using our form of the correlators on V , it follows that

〈〈F (σ)〉〉g=0 = Tr

[
F (σ)

H̃

−K

1 − K

]
. (4.8)

4.2 Two examples

In this section we will apply our simple result and the observations above to two examples.

These models are not difficult to solve, but they illustrate some techniques and ideas that

should be useful even in much more intricate examples.
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4.2.1 A-model correlators for P
4.

Let us start with the canonical GLSM example: P
4. This is a one parameter model with

Q = (1, 1, 1, 1, 1). The equation of motion from eqn. (2.4) is just σ5 = q, and H̃ = 5σ4,

yielding

〈σa〉g = 5g−1
∑

σ|σ5=q

σa+4(g−1). (4.9)

The correlators satisfy the selection rule discussed earlier:

〈σa〉g = 0 unless a + 4(g − 1) = 5n for some integer n,

in which case

〈σ5n+4(1−g)〉g = 5gqn. (4.10)

The all-genus correlation function is given by

〈σa〉 =
∑

g≥0

λ2g−2〈σa〉g. (4.11)

Evaluating this for 0 ≤ a ≤ 4, we find

〈σa〉 =
5(5qλ2)a

1 − 55q4λ10
, a = 0, . . . , 3,

〈σ4〉 =
λ−2

1 − 55q4λ10
. (4.12)

The intriguing pole at q4λ10 = 5−5 agrees with the findings of [16]. The interpretation

of this pole is far from clear. While we might expect such a pole in a topological string

theory, where it could be a manifestation of non-perturbative effects in λ, we have not

coupled the model to d = 2 gravity, and thus any string-based interpretation does not

seem appropriate.

Finally, we can use the quantum restriction formula to compute the unique A-model

correlator on the quintic in P
4. The anti-canonical divisor corresponds to −K = 5σ, and

we find

〈〈σ3〉〉g=0 = Tr
σ3

5σ4

5σ

1 + 5σ
= Tr

1

1 + (5σ)5
=

5

1 + 55q
. (4.13)

4.2.2 A two parameter example

This is another example that has been studied in detail in [9]. This GLSM corresponds

to the toric variety obtained by resolving the curve of Z2 singularities in the weighted

projective space P
4
1,1,2,2,2. The GLSM has n = 6, r = 2 and charges

Q =

(
0 0 1 1 1 1

1 1 0 0 0 −2

)
. (4.14)

Obviously, ∆ = 4, and H̃ = 8σ3
1σ2. Letting σ2 = ωσ1, the equations of motion dW̃eff = 0

may be written as

σ4
1 =

q1

1 − 2ω
, (4.15)
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and

P (ω) = ω2 − q2(1 − 2ω)2 = 0. (4.16)

The selection rule implies that 〈σa
1σb

2〉g is zero unless a + b = 4(m + 1), and if m ≥ 0, we

have

〈σ4(m+1)−b
1 σb

2〉 =
∑

g≥0

Tr
[
σ

4(m+g)
1 ωb+g−1(8λ2)g−1

]
, (4.17)

which we can reduce to a trace on the roots of P (ω), denoted by Tr′:

〈σ4(m+1)−b
1 σb

2〉 =
qm
1

2λ2(1 − (8λ2q1)2q2)
Tr′

[
ωb−1(1 + (8λ2q1 − 2)ω)

(1 − 2ω)m+1

]
. (4.18)

Again, we observe the interesting λ-dependent pole.

At genus zero the above expression simplifies to

〈σ4(m+1)−b
1 σb

2〉g=0 =
qm
1

2
Tr′

ωb−1

(1 − 2ω)m
. (4.19)

We can again use the quantum restriction formula to compute correlators on the anti-

canonical hypersurface. We have −K = 4σ1, and

〈〈σ3−j
1 σj

2〉〉g=0 = 4〈 σ4−jσj
2

1 + (4σ1)4
〉g=0 = 2Tr′

ωj−1(1 − 2ω)

1 − 44q1 − 2ω
. (4.20)

In this and other two-parameter models it is convenient to rewrite the Tr′ as a contour

integral:

Tr′ f(ω) =
∑

ω̂|P (ω̂)=0

∮

C(ω̂)

dω

2πi

f(ω)P ′(ω)

P (ω)
, (4.21)

where C(ω̂) is a small contour about ω = ω̂. This form makes it easy to evaluate the traces.

In the case of more than two parameters, more sophisticated residue techniques may be

applied [11, 17]. Applying this to the case at hand,

〈〈σ3−j
1 σj

2〉〉g=0 =
∑

ω̂|P (ω̂)=0

∮

C(ω̂)

dω

2πi

4ωj

(1 − 44q1 − 2ω)P (ω)
. (4.22)

Pulling the contour off the roots of P (ω), the correlators are written as

〈〈σ3−j
1 σj

2〉〉g=0 = 2
ωj

P (ω)

∣∣∣∣
ω=

1−44q1
2

+ 2Res

{
ωj

(ω − 1−44q1

2 )P (ω)

}∣∣∣∣∣
ω=∞

. (4.23)

Straightforward algebra yields

〈〈σ3
1〉〉g=0 =

8

D
,

〈〈σ2
1σ2〉〉g=0 =

4(1 − 28q1)

D
,

〈〈σ1σ
2
2〉〉g=0 =

8q2(2
9q1 − 1)

(1 − 4q2)D
,
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〈〈σ3
2〉〉g=0 =

4q2(1 + 4q2 − 28q1 − 3072q1q2)

(1 − 4q2)2D
, (4.24)

and D = (1 − 28q1)
2 − 218q2

1q2. This reproduces the results of [9, eqn. (4.28)].4

5. A non-compact example

Having examined the properties of models with a Non-Geometric Phase, we now turn

to models where Higgs vacua are present in every phase. Sadly, this means that with

the current technology we will need to restrict attention to genus zero correlators, but,

nevertheless, we will be able to uncover some surprises.

We will work with the example studied at length in [10]. This GLSM has n = 5, r = 2

and charges

Q =

(
1 1 1 −N −1

0 0 1 1 −2

)
. (5.1)

There are four classical phases, each corresponding to a triangulation of a toric fan. The

fan without any subdivisions is an orbifold, C
3/Z(2N+1)(2,2,1), the partially subdivided fans

correspond to partial resolutions, and the completely subdivided fan is the smooth phase.

These phases are depicted in Fig. (1). We will assume N > 2, and we have labelled the

phases according to the Geometric-Mixed terminology defined above. This model has a

continuous Coulomb branch which emerges for small |q1| and q2 = 1/4, and, naively, one

would expect that some observables in the TFT will be sensitive to this singularity.

The A-model correlators of interest are the Ya,b = 〈σa
1σb

2〉g=0. The ghost number

selection rule requires that for a non-zero correlator a + b = 3 + (2 − N)n. In [10], we

were able to compute the Y3+(2−N)n−b,b correlators for n < 0 by summing the instantons in

the Geometric Phase, and we found that these correlators could be put into a “Coulomb”

form:5

Y Geometric
3+(2−N)n−b,b = qn

1 Tr′
ωbs(ω)n

3N + 1 + 2Nω
, (5.2)

where Tr′ is to be taken over the roots of

P (ω) = (1 + ω)(−N + ω) − q2(1 + 2ω)2, (5.3)

and s(ω) is given by

s(ω) =
(−1 − 2ω)(−N + ω)N

1 + ω
. (5.4)

For later convenience, we will re-write these as a contour integral:

Y3+(2−N)n−b,b =
∑

ω̂=ω+,ω−

∮

C(ω̂)

dω

2πi

ωbs(ω)n

(1 + 2ω)P (ω)
, (5.5)

where C(ω̂) is a small contour about ω = ω̂, and ω± are the roots of P (ω).

4Our expression corrects a sign error in the last correlator in [9, eqn. (4.28)].
5We call this the “Coulomb” form because it is the answer that one would get by naive application of

eqn. (1.1).
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Figure 1: Phases of the GLSM.

The computation of the n = 0 correlators is complicated by the non-compactness of

the orbifold, and in [10] we circumvented that problem by using the quantum cohomology

relations to determine the Y3−b,b. As we saw above, these relations are powerful, and it is

easy to show [10] that if the Y3−b,b are determined from the Y3+(2−N)n−b,b by the relations,

they must be of given by eqn. (5.2) with n = 0. Upon computing the trace, one finds that

the Y3−b,b so determined are sensitive to the q2 = 1/4 singularity. As we will show below,

our basic assumption was incorrect. The quantum cohomology relations simply do not hold!

Even without further computations, there are several reasons to suspect the validity

of this result. First, the Y3−b,b are independent of q1 and thus, if they are sensitive to the

q2 = 1/4 singularity at small |q1|, they are equally singular at q2 = 1/4 for arbitrary q1.

However, we are hard pressed to explain the singularity at large |q1| and q2 = 1/4. After

all, this is deep in the weakly coupled regime of the Geometric Phase, where a classical

analysis is reliable and does not reveal any singularities. In addition, we know that the

gauge instantons are labelled by sets of integers n ∈
(
R

d
)∨

, and each such instanton

contributes a term Y n
∏

a qna
a to the correlator. In a particular phase KV , the instanton

numbers corresponding to non-zero Y n must lie in the dual cone defined by

K∨
V =

{
n ∈

(
R

d
)∨

|〈n, r〉 ≥ 0 ∀ r ∈ KV

}
. (5.6)

It is easy to see that in the Geometric Phase the only instantons that can contribute to

Y3−b,b have n = 0. Hence, one would expect Y3−b,b to be constants, and any q2 dependence,

let alone a singular one, is strange indeed. This would seem to indicate that the quantum

cohomology relations are violated whenever the Y3−b,b correlators are involved.
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To explore this further, let us now work out the correlators in one of the Mixed Phases.

We will choose the phase A, but the computation may be easily repeated for other phases.

First, let us compute the contribution from the Coulomb vacua. For this model, H̃ is

given by

H̃ = (N − 2)σ2
1((3N + 1)σ1 + 2Nσ2), (5.7)

and the equations of motion that follow from dW̃eff = 0 are

(σ1 + σ2) (σ2 − Nσ1) = q2 (σ1 + 2σ2)
2 ,

σ2
1 (σ1 + σ2) = −q1 (σ2 − Nσ1)

N (σ1 + 2σ2) . (5.8)

As in the previous section, we may parametrize the solutions by σ1 and the ratio ω = σ2/σ1:

P (ω±) = 0

σ1,±;p = ζp (q1s(ω±))
1

2−N ,

σ2,±;p = ω±σ1,±;p, (5.9)

where ζ = e
2πi

N−2 , p = 0, . . . , N − 1, and P (ω) and s(ω) are as in eqns. (5.3), (5.4).

Let us consider the solutions (σ1,±;p, σ2,±;p) in the weak coupling limit. Weak coupling

in the Mixed Phase A corresponds to

|q2|−N À |q1| À |q2|, (5.10)

and in particular, |q2| → 0. In this limit the σ-vacua have a simple structure:

ω+ → −1 − 1

N + 1
q2,

ω− → N +
(2N + 1)2

N + 1
q2, (5.11)

and hence

σ2−N
1;+ → q1q

−1
2 (−N − 1)N+1,

σ2−N
2;− → −q1q

N
2

(2N + 1)2N+1

(N + 1)N+1
. (5.12)

Thus, we see that in the weak coupling limit of the Mixed phase the N − 2 “−” critical

points of W̃eff have growing σ vevs, while the N − 2 “+” critical points have decreasing

σ vevs. Thus, only the “−” solutions correspond to actual Coulomb vacua, and their

contribution, Y Coulomb
3+(2−N)n−b,b, is given by the ω− contribution in eqn. (5.5):

Y Coulomb
3+(2−N)n−b,b = qn

1

∮

C(ω−)

ωbs(ω)n

(1 + 2ω)P (ω)
. (5.13)

Next, we consider the Higgs contribution. Unlike the Coulomb computation, which

gives the same form regardless of whether n = 0 or n < 0, here this distinction makes a

crucial difference. First, let us consider the situation when n < 0. Using the standard toric
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techniques of Morrison and Plesser, we can perform the instanton sum and evaluate the

Higgs branch contribution to the correlators. Performing the requisite toric intersection

computations, we reduce the correlators to a single sum:

Y Higgs
3+(2−N)n−b,b = −qn

1

∞∑

m=−n

∮

C(−1)

dω

2πi

ωbs(ω)nRm

(1 + ω)(−N + ω)(−1 − 2ω)
, (5.14)

where

R = q2
(1 + 2ω)2

(1 + ω)(−N + ω)
, (5.15)

and C(−1) is a small contour about ω = −1: ω = −1 + εeiθ. For uniform convergence we

must have

|q2| <
ε(N + 1 − ε)

1 + 2ε
. (5.16)

Provided that this condition holds, we can exchange the integral and the sum to obtain

Y Higgs
3+(2−N)n−b,b = qn

1

∮

C(−1)

ωbs(ω)nR−n

(1 + 2ω)P (ω)
. (5.17)

And now comes a pleasant surprise: the condition for convergence ensures that ω = ω+ is

enclosed by C(−1), while ω = ω− remains outside of it, and so, since R(ω±) = 1,

Y Higgs
3+(2−N)n−b,b = qn

1

∮

C(ω+)

dω

2πi

ωbs(ω)n

(1 + 2ω)P (ω)
, (5.18)

and for n < 0 we precisely have the desired form for the correlators:

Y Geometric
a,b = Y Higgs

a,b + Y Coulomb
a,b . (5.19)

The contribution to the n = 0 correlators is even more remarkable. The standard

manipulation of the instanton sum yields

Y Higgs
3−b,b = Y 0

3−b,b +

∞∑

m=0

∮

C(N)

dω

2πi

ωbRm

(1 + ω)(−N + ω)(−1 − 2ω)
, (5.20)

with R as above, and C(N) a small contour about ω = N : ω = N + εeiθ. The constants

Y 0
3−b,b parametrize our ignorance of how to compute intersection numbers on a non-compact

variety. Presumably, these are computed by an appropriate cohomolgy theory. For uniform

convergence we must have

|q2| <
ε(1 − ε)

1 + 2N + ε
. (5.21)

Carrying out the sum, we have

Y Higgs
3−b,b = Y 0

3−b,b −
∮

C(N)

dω

2πi

ωb

(1 + 2ω)P (ω)
. (5.22)

The condition for convergence ensures that, this time, ω− is enclosed by C(N), while ω+

remains outside. The crucial overall minus sign means that putting this together with

the Coulomb contribution, we find that the Y3−b,b are just constants, as predicted by our

discussion above.

– 17 –



J
H
E
P
0
2
(
2
0
0
6
)
0
4
4

A similar analysis may be carried out in the other Mixed Phases. In those phases all of

the Coulomb vacua are reliable and contribute. For n < 0 there are no contributions from

the gauge instantons of the Higgs branch, while for n = 0 the instanton sums cancel the

Coulomb contribution up to the constants Y 0
3−b,b. It would be interesting to examine these

constants in more detail, but whatever they are, the resulting correlators are incompatible

with quantum cohomology relations.

One final aspect of this example deserves mention—the disappearance of the semi-

classical singularity at q2 = 1/4. We know that semi-classical analysis of the Higgs branch

in Mixed Phase B or C shows this singularity. We expect that analysis to be valid for small

|q1|. Of course, the discrete Coulomb vacua also exist in this limit, and it is possible that

the presence of these additional Coulomb vacua washes out the singularity. It appears that

this is so, at least in the topological theory.

6. Discussion

We have found a simple algebraic formula for the Coulomb contribution to the A-model

correlators in toric GLSMs. We hope to have convinced the reader that this expression is

conceptually satisfying and computationally useful. We will now conclude with an outlook

on some interesting questions that remain.

6.1 Some observations on the Coulomb vacua and the GLSM

Our work is a simple application of the general principle of localization in TFTs. It has

been known for a long time that in the Geometric Phases the path integral localizes onto the

gauge instantons. We have merely extended this result to the Mixed and Non-Geometric

Phases. In models with a Non-Geometric Phase our result gives a surprisingly complete

form for the A-model correlators. In models without such a phase we are restricted to

genus zero by our inability to compute the contribution from the Higgs vacua.

Perhaps the most surprising finding of our work is that for models without a Non-

Geometric Phase the quantum cohomology relations may fail for a subset of the correlators

which, in some Mixed Phase, receive contributions from both Higgs and Coulomb vacua.

There are two simple “proofs” of quantum cohomology relations: the first is a Geometric

Phase analysis of the intersection numbers on the gauge instanton moduli spaces [9, 10],

and the second is a Non-Geometric Phase analysis given above. The first argument is subtle

when the phase corresponds to a non-compact variety, and the second does not apply in

the absence of a Non-Geometric Phase. The example of the last section illustrates that

these problems are manifestations of the same failure of the quantum cohomology relations

in different phases.

We have not addressed computations of the correlators in phases where discrete Higgs-

Coulomb vacua are present. It would be interesting to understand the contributions from

these vacua. This exercise may well provide some new insights into the more mysterious

aspects of GLSM physics, and it may provide us with another set of phases where the

computation of the correlators is made tractable.
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Finally, we have derived our results in the context of traditional GLSMs. It would be

interesting to extend our treatment to the recently much-discussed GLSMs corresponding

to supermanifolds.

6.2 A pure Landau-Ginzburg description?

The contribution to the A-model correlators bears a striking resemblance to Vafa’s result

on correlators in topological Landau-Ginzburg models [11]. Vafa studied a topological

Landau-Ginzburg model with a superpotential W (X), and he showed that the correlators

are given by

〈F (x)〉 = TrF (x)Hg−1, (6.1)

where the trace is taken over the critical points of W , and each contribution is weighted

by the Hessian of W , H, evaluated at that point.

While it is certainly not true that the GLSM model correlators are computed by a

Landau-Ginzburg theory with Σa as the fields and W̃eff as the superpotential, because

of the remarkable similarity between eqn. (1.1) and eqn. (6.1), it is natural to wonder if

some Landau-Ginzburg theory computes the same correlators. It is easy to see that this is

possible for at least some models. For example, a Landau-Ginzburg theory of a single field

Σ and superpotential W = 1
6Σ6 − qΣ has the equation of motion σ5 = q and Hessian of

5σ4. Hence, according to eqn. (6.1), this model will compute the same correlators as the

GLSM with target space P
4.

It is clear that, in general, the requisite Landau-Ginzburg model will be much more

complicated. After all, the theories studied by Vafa can be constructed as relevant deforma-

tions of a free theory with an ultraviolet R-symmetry with charges Q+(X) = Q−(X) = 0,

and all of the solutions to the classical equations of motion dW (x) = 0 are on the same

footing. It is tempting to suggest that the method of Hori and Vafa [18], which relies on du-

alizing the matter fields, yields this Landau-Ginzburg description. It would be interesting

to check whether this is the case.

6.3 Coupling to topological gravity

Another direction to pursue is to couple the model to topological gravity in the spirit of [16].

The resulting theory would be an interesting topological string theory, where perhaps the

λ-dependent poles we have found would find a natural interpretation. Furthermore, this

model would, in principle, compute a much larger subset of non-trivial Gromov-Witten

invariants. Hopefully, the simplicity of our result for the correlators would persist to some

extent in the string theory.
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